
WCL: Delivering E�cient Common Lisp Applications under Unix

Wade Hennessey

Center for Design Research

Stanford University

wade@sunrise.stanford.edu

Abstract: Common Lisp implementations for Unix

have traditionally provided a rich development environ-

ment at the expense of an ine�cient delivery environ-

ment. The goal of WCL is to allow hundreds of Lisp

applications to be realistically available at once, while

allowing several of them to run concurrently. WCL ac-

complishes this by providing Common Lisp as a Unix

shared library that can be linked with Lisp and C code

to produce e�cient applications. For example, the

executable for a Lisp version of the canonical \Hello

World!" program requires only 40k bytes under SunOS

4.1 for SPARC. WCL also supports a full development

environment, including dynamic �le loading and debug-

ging. A modi�ed version of GDB [1], the GNU Debug-

ger, is used to debug WCL programs, providing support

for mixed language debugging. The techniques used in

WCL should also be applicable to other high-level lan-

guages that allow runtime mappings from names to ob-

jects.

1 Introduction

1.1 Lisp Machine Approach

Many Common Lisp implementations for Unix are

modeled after the \Lisp Machine" view of comput-

ing. A Lisp development environment is often a multi-

megabyte executable that contains a compiler, evalua-

tor, dynamic linker, debugger, runtime library, threads

package, editor, window system interface, etc., all run-

ning in a single address space. Support for passing data

to foreign languages is typically quite good, although

great e�ort is usually taken to distinguish Lisp data

0

from foreign data. However, because Lisp programs can-

not be provided to other programmers in a form com-

patible with the native system linker, Lisp must remain

\in control" by linking foreign code into the Lisp image.

Unfortunately, foreign debugging information is usually

lost in the process, thus making debugging of mixed

language programs di�cult.

Standalone applications are produced by dynami-

cally loading application code into a running Lisp and

then saving a memory image to disk. Autoloading can

be used to delay the loading of code until runtime, thus

reducing image size, but it can substantially increase the

startup time of an application. Treeshakers and selec-

tive loading of subparts of the Lisp system are also used

to reduce the size of saved memory images, but the in-

herently intertwined nature of Common Lisp makes this

di�cult to use e�ectively. Furthermore, the read-only

portions of a memory image can be shared only with

other people running exactly the same image. Thus,

every application that is even partially written in Lisp

must duplicate both on disk and in memory a signi�-

cant portion of the Lisp runtime library, no matter how

small the executable size becomes.

1.2 Unix and WCL approach

Window oriented Unix programs encountered problems

similar to Common Lisp when dealing with large li-

braries such as X. Every application that wanted to ac-

cess the window system was statically linked to include

large portions of the X library, giving each application

its own copy of the library code. For example, when

the executable for the X Calculator program xcalc is

linked this way, it occupies 773k bytes of disk space un-

der Ultrix 4.1 on a MIPS based DECStation. Dozens of

other X clients have similar disk requirements, leading

to a poor utilization of disk space and memory.

Shared library support was added to many versions

of Unix to overcome this problem. Executables only

contain the code that is unique to a speci�c application,



while common library code is shared both on disk and

in memory with other applications. For example, under

SunOS 4.1 on SPARC, xcalc only requireds 82k bytes

of disk space because it shares the X library code with

other applications.

WCL takes advantage of shared libraries to produce

correspondingly e�cient Lisp applications. WCL emits

standard \.o" �les that can be linked into a sharable

library using ld, the standard Unix linker. Applications

can then be linked with shared libraries using ld again.

Thus, Lisp libraries can be shard with other programs

just as easily as a library written in C or Fortran.

Most Lisp systems also provide their own unique

debugger that executes in the same address space as

the Lisp system. This di�ers from the Unix model of

debugging in which the debugger executes in a supe-

rior process that runs and controls the program being

debugged in a separate, inferior process. In order to

make WCL programs work well with other languages,

the GNU debugger GDB has been modi�ed to under-

stand Lisp. GDB was chosen because it is an excel-

lent debugger with full source code availability. The re-

sult is that Lisp and C programs can be linked together

and debugged using the native tools used by other Unix

programs. Similarly, native pro�ling and code analysis

tools can also be applied to Lisp programs.

2 WCL Compiler and Runtime

Model

WCL translates CommonLisp into either K+R or ANSI

C. As Lisp code is translated to C, information about

symbol usage, structure de�nitions, and package oper-

ations is also recorded. This information is currently

stored as a comment at the start of the emitted C �le,

although it should eventually be stored in a special sec-

tion of the object �le. The information is later used by

the linking portions of the WCL development system.

2.1 Memory Model

The runtime model for WCL is fairly conventional. All

dynamically allocated storage comes from a single heap.

Every object in the heap has a single word header, one

byte of which is used as a type �eld. The least signi�cant

bit of every Lisp pointer is used as a tag bit. A tag of

0 indicates that the pointer is really a 31 bit immediate

integer, while a tag of 1 signi�es that the type �eld in

the object header indicates the object's type. A single

table of all possible character objects is maintained to

avoid allocating characters in the heap.

A conservative GC based on the work done in

Scheme->C [2] is used to garbage collect the dynamic

heap. A Common Lisp conservative GC is actually a

bit simpler than a conservative GC for Scheme because

Common Lisp does not support heap allocated upward

continuations. A static heap that is not subject to

garbage collection is also provided for permanent ob-

jects that should never be copied.

2.2 Runtime Model

Every Lisp function is translated into a corresponding

C function, using name mangling to convert Lisp names

into legal C names. Depending upon the compiler's

optimization settings, Lisp functions may be called di-

rectly, just as they would normally be called in C, or

they may be called indirectly through the function cell

of the symbol that names the function. The �rst argu-

ment to every Lisp function is an argument count, fol-

lowed by the required arguments. The varargs/stdarg

support in C is used to support optional, keyword and

rest arguments. Both heap allocated and stack allo-

cated rest argument lists are supported, as well as stack

allocated rest argument vectors.

Multiple values are supported by overloading the

purpose of the argument count. If a caller wants to

receive multiple values, a pointer to a stack allocated

structure is passed as the argument count. The ac-

tual argument count is stored inside of this structure,

along with su�cient space for receiving the values. The

structure pointer is distinguishable from an actual argu-

ment count because argument counts are small integers,

while stack pointers appear as large integers greater

than call-arguments-limit.

If a callee wants to return multiple values, the �rst

value is returned as the function's normal return value,

while the remaining values are stored into the values

structure along with a return value count. This sys-

tem imposes no overhead on the normal single value

expected, single value returned, function call. The only

complication involves passing a multiple value holder on

to other functions when making tail calls. For example,

if A calls B expecting multiple values, and B does a tail

call to C, B must pass along the multiple value holder

from A to C. However, it must determine at runtime

if A passed a multiple value holder. This check adds

a few instructions to tail calls. However, this approach

has the advantage of using standard C while still being

e�cient.

Catch, throw, dynamic return-from, dynamic go,

unwind-protect, and special variable binding are all

supported by setjmp and longjmp, and a stack allo-

cated \dynamic chain". For example, a call to throw

�rst searches the dynamic chain for a corresponding

catch tag. If found, then the chain is unwound, undoing

special bindings and using longjmp to hop up the stack



and execute cleanup code in any unwind-protects.

Once the stack is unwound, longjmp transfers control

to the catch point.

Setjmp and longjmp present a few problems for

Lisp. Implementations of setjmp and longjmp that

do not preserve all program state at a setjmp site re-

quire volatile declarations, decreasing the e�ciency of

the code. Also, because C and Lisp can freely call each

other, C code can do a longjmp through several dy-

namic chain frames to a setjmp site. However, longjmp

has no idea that the dynamic chain exists, and thus no

unwinding will occur and the top-of-chain pointer will

be incorrect. For these two reasons, it may be prefer-

able to write a custom version of setjmp and longjmp

that saves all state and has builtin support for Lisp's

dynamic chain, although this is not currently done.

Closures present another interesting problem given

that all Lisp functions should look like C functions. A

closure consists of an environment vector and some code

that expects to use that environment. These two com-

ponents are glued together by a small piece of heap al-

located machine code that stores the address of the en-

vironment vector into a global variable and then jumps

to the closure's code. The code then stores the contents

of the global variable into a local environment pointer

variable, e�ectively using the global variable as an ex-

tra argument register. The garbage collector has spe-

cial knowledge about closures and understands how to

load and store the environment pointer that has been

encoded into the instruction stream of the closure.

Foreign functions must be declared before being

called. For example, the C function ldexp demonstrates

how WCL shares numbers with C:

(defforeign ldexp ((significand double)

(exponent int) =>

(result double)))

The call (ldexp sig exp) compiles into the follow-

ing C code:

NEW_FLOAT(ldexp(RAW_FLOAT(v_SIG_0),

FX_TO_INT(v_EXP_1)));

WCL provides various C macros which are used to

pass data between Lisp and C. Similarly, WCL also

provides support for sharing other data types such as

strings and arrays. All Lisp strings are null terminated

so they can be passed directly to C. Returned strings

are represented in the same way that a complex vec-

tor would be represented. A two word complex string

object is allocated and initialized with a pointer to the

returned string. The length �eld of the complex string

object is also initialized by calling strlen. Thus, native

C strings appear to be full edged Lisp objects without

any copying of data, allowing destructive operations to

work on returned data as expected. This same tech-

nique can also be used to pass and receive arrays of any

rank and element type.

3 Linking Shared Libraries and

Applications

3.1 Linking Shared Libraries

Anyone may build a shared library of Lisp code with the

functions define-library and link-library. How-

ever, before ld can link a library of Lisp �les, the extra

linking information that was written during the com-

pilation of the library is used to create additional code

and data.

Every time a Lisp �le contains a reference to a Lisp

symbol, a reference to the mangled name of the symbol

is emitted. However, at some point exactly one correctly

initialized instance of the symbol must be created. The

Unix linker's concept of a common area provides part of

the support necessary to create exactly one symbol, but

it lacks support for properly initializing this common

area so that the symbol's name, function cell, etc. all

contain appropriate values.

To overcome this problem, information about sym-

bol usage in each �le is stored in the �le's linking in-

formation, and exactly one instance of every referenced

symbol is written out as a C structure. The slots of this

structure are also initialized according to the linking

information. For example, if one �le de�nes a function

named FOO while another �le contains the form (DEFVAR

FOO 3), the compiler records these facts in the linkage

information for each �le. At link time, the function cell

of FOO will be initialized to point to the corresponding

C code, while the value cell will contain the �xnum 3,

thus avoiding any runtime work to initialize these slots.

The linker does not currently know how to initialize the

package system at link time. Thus, every symbol is in-

terned at runtime in its corresponding package. The

garbage collector is also informed about all symbols so

that they can be traced.

Linking information about structure de�nitions is

also recorded and used to de�ne e�cient structure pred-

icates. In a uid development environment, a structure

predicate may potentially have to examine the struc-

ture hierarchy at runtime to determine the type of an

object. However, by freezing the structure hierarchy at

link time, WCL can create structure predicates that can

perform type checks more quickly.

While compiling a Lisp �le, every top-level form is

collected into an initialization thunk that must be called

at runtime to initialize the �le, and the name of this



Library Text Data File Size

Common Lisp 1351k 311k 2113k

Compiler 868k 221k 1425k

CLXR5 1548k 352k 2400k

Development executable 41k 8k 49k

Table 1: WCL Library and Executable Sizes

thunk is recorded in the linking information. When

linking a group of �les, a single initialization thunk is

de�ned for all the �les, sequentially calling each �le's

initialization code. In order to \start" the whole collec-

tion of �les, only this single initialization thunk must be

called.

Once these extra pieces of code and data have been

compiled, everything is linked by ld into a sharable li-

brary. Additional informationabout the procedures and

symbols de�ned in the library is also recorded.

3.2 Linking an Application

A list of �les may also be linked into an executable ap-

plication. Custom code and data are created as before,

and a smallmain program is written to start the applica-

tion. All of these �les and any required shared libraries

are then linked together to form an executable.

4 WCL Status

4.1 Functionality

WCL is currently organized into three shared libraries:

� Common Lisp - implements approximately 80%

of the functions, macros, etc. in the Common

Lisp manual, as well as the loopmacro, the condi-

tion system, a foreign function interface, and some

popular extensions to Common Lisp.

� Compiler - implements the compiler and linker

functions

� CLXR5 - implements an interface to the X window

systems.

The sizes of these libraries are shown in table 1. All

libraries were compiled with GCC 2.1 [3] into position-

independent code. Unfortunately, this tends to make

them a bit slower than position-dependent code, but it

is necessary for code sharing.

While some of the more obscure Common Lisp func-

tions and features are not implemented yet, enough of

Common Lisp has been implemented to allow WCL to

completely compile, link and debug itself, thus support-

ing its own development. Because all of the functional-

ity provided by WCL is provided in the form of shared

libraries, the executable for the development environ-

ment is only 49kbytes.

The following packages also compile and run, but

are not provided as shared libraries yet:

� May Day version of PCL [4]

� XP Pretty Printer

� Logical Pathnames

All three of these systems should eventually be inte-

grated into the Common Lisp library. Of these systems,

PCL presents the most integration work because it con-

tains signi�cant boot strapping and initialization code

that would make starting the library too slow. More

work must be done to eliminate these initialization steps

or perform them at compile or link time. Together, the

libraries and systems described above implement most

of the functionality described in the second edition of

the Common Lisp manual [5].

4.2 Porting

At one time WCL ran on a MIPS based DECStation

under Ultrix, but that port has not been maintained and

needs work. However, running WCL on a little-endian

MIPS processor and a big-endian SPARC processor was

useful for removing byte order dependencies in the code.

Table 2 shows some statistics about the source code for

WCL 2.0 running on SPARC.

The dynamic loader is the largest port speci�c piece

of WCL. It consists of 1200 lines of C code, and signif-

icant changes are required to port it to other operat-

ing systems. A small amount of assembly code is also

required for garbage collection, closures and �xnum to

bignum overow handling. However, because WCL uses

C as an intermediate language, it is much more operat-

ing system dependent than it is machine dependent.

5 Development Environment

The WCL development environment is really just a Lisp

application that uses the Compiler, Common Lisp, and



CL Library Lisp code 15300 lines 3% Unix dependent

CL Library C code 8000 lines 18% SunOS dependent

CL Library assembly code 90 lines 100% SPARC dependent

Compiler/Linker Lisp code 5700 lines 1% SunOS dependent code

CLX R5 Lisp Code 18900 lines 3% Machine and SunOS dependent.

Table 2: WCL Source Code Information

CLX libraries. GNU Emacs [6] and GDB also serve

as useful development tools, although they are not re-

quired. When using Emacs, GDB mode is usually used

to start an inferior GDB, which in turn starts an infe-

rior WCL process. Unix pro�ling tools are also useful

for analyzing performance.

5.1 Dynamic loading

The Common Lisp load function provides an interface

to the dynamic code loader. The same object �les that

are linked into an executable image can also be dynam-

ically loaded into a running Lisp. The loader �rst reads

the various sections of the object �le into memory and

then performs all necessary relocations. In order to per-

form these relocations, the loader's symbol table is ini-

tialized with all the external symbols de�ned by the ex-

ecutable as well all the symbols de�ned by any shared

libraries with which the executable is linked. After this

initialization, new external symbols are added as �les

are loaded.

The loader described above is su�cient for loading

and relocating normal C �les. However, the �les pro-

duced by WCL contain references to Lisp symbols even

though these symbols may not exist. Normally these

symbols are de�ned through the application linking pro-

cess described earlier. However, in the dynamic linker

they may appear to be unde�ned symbol references. If

the loader calls the unde�ned symbol handler, the sym-

bol name is �rst checked to see if it is the name of a

Lisp symbol. If so, then the name is demangled, and

the Lisp function intern is called with the appropriate

symbol and package name, or make-symbol is called if

the symbol is not in a package. Thus, loading an object

�le can cause new Lisp symbols to be created.

After the �le is loaded and correctly relocated, the

Lisp linking information associated with the �le is ex-

amined. This information is used to correctly initialize

symbol function and value cells, and to call the initial-

ization thunk for the �le. A \uid" defstruct predicate

is also de�ned for any structures that are de�ned in the

�le. This predicate di�ers from the one created during

application linking by examining the structure inheri-

tance hierarchy at runtime. Although this approach is

slower, it is more useful for program development since

it tracks defstruct inheritance changes correctly.

5.2 Debugging with GDB

GDB is a multi-language debugger that already sup-

ports C, C++, Modula-2 and Fortran, and several

changes have been made to support Lisp debugging.

Some of these changes are unusual because they rely on

the underlying Lisp process to actively cooperate with

GDB, which is quite di�erent from the normally passive

role the inferior process plays.

A Lisp name demangler has been added to the parts

of GDB that print frame names. Thus, backtraces now

show mangled Lisp names as they originally appeared,

while still displaying regular C function names correctly.

The frame handling code in GDB also has special knowl-

edge about the names of functions in the Lisp evaluator

so that frames that are really being used to interpret

Lisp code are either hidden or are displayed as the name

of an interpreted function. When examining an inter-

preted stack frame, it is also possible to recursively enter

the Lisp evaluator with the current lexical environment

using a new GDB command called eval.

The eval command uses GDB's ability to call func-

tions in the process being debugged. When eval is

called, the name of the current frame is examined. If

GDB recognizes that the frame is part of the evaluator,

then a new read-eval-print loop is started in the under-

lying process using the current lexical environment. A

small portion of the evaluator is written in C to allow

convenient access to this environment. This loop allows

access by name to local variables, and thus any Lisp

expression may be interactively evaluated in the lexical

environment of an interpreted function. If the current

frame is not an interpreted function, but is instead a

C function or a compiled Lisp function, then the read-

eval-print loop is run in the null lexical environment.

GDB is also integrated with the Common Lisp con-

dition system by using GDB's ability to call functions

in the inferior Lisp process. The new command info

restarts shows all available restart options, while the

command restart allows the user to select an option.

The new abort command is also available as a conve-

nient short cut for aborting to top-level by selecting the

outermost abort restart. This command is especially

useful when Lisp is in an in�nite loop and control-c is

used to interrupt the computation. The standard GDB

continue command can also be used to continue an in-



Figure 1: WCL Running the VMACS Electronic Design Notebook

terrupted computation, or to select a restart option.

Source level debugging of compiled Lisp functions

is not yet supported. Instead, the translated C code

must be debugged. Although source level debugging of

Lisp using GDB is the ultimate goal of WCL, debugging

the C code is still feasible. Variables in compiled Lisp

functions can be examined with the new GDB lprint

command. Lprint accepts the mangled name of a Lisp

variable, and calls the printer in the underlying Lisp

process with the value of that variable.

The GDB add-symbol-file command already sup-

ports adding the symbol table and debugging informa-

tion of a �le that has been dynamically loaded at a

known address in the inferior process. However, debug-

ging dynamically loaded Lisp code also required a few

changes to GDB. After Lisp loads a compiled �le, a tem-

porary �le is written containing the name of the loaded

�le and the address at which it was loaded. WCL then

uses the Unix kill system call to send SIGUSR1, a user

de�ned Unix signal, to itself. Because GDB is debug-

gingWCL, it intercepts this signal and understands that

it should update its symbol table using the information

in the temporary �le. Execution of WCL is then re-

sumed normally, and the dynamically loaded �le can be

fully debugged without any intervention from the user.

6 Application Performance

6.1 Real Applications

Figure 1 shows WCL running the VMACS Electronic

Design Notebook [7]. VMACS is a visual editor imple-

mented in 87000 lines of Common Lisp code, and is the

largest real application that WCL has compiled and run.



Metric WCL-2.0 Lucid 4.0 AKCL 1-530

executable size 40k 1564k 2440k

text size 32k 1040k 1290k

data size 8k 475k 1150k

minimum start+exit time 1.2s .3s .01s

Table 3: \Hello World!" Statistics

It uses the Compiler, Common Lisp and CLX libraries

as well as the logical pathname system, thus serving as

a broad test of WCL features.

6.2 Code size

In order to compare minimum application sizes, an exe-

cutable that prints the string \Hello World!" and then

exits was created using three di�erent Lisps. The re-

sulting executable sizes are listed in table 3.

AKCL [8] is a modi�ed version of KCL [9]. The

ACKL executable was produced with the save-system

command. AKCL simply dumps a memory image of

the running Lisp, and thus the executable's size is es-

sentially the same size as the Lisp development environ-

ment's size.

The Lucid [10] executable was produced using Lu-

cid's delivery toolkit. This toolkit is based on the con-

cept of treeshaking. Starting from a known root set in a

running Lisp, all functions that are not required in the

�nal application are \shaken" away, leaving only the re-

quired portions of the runtime system. Because Lisp's

inherently intertwined nature makes it di�cult to deter-

mine at link time which functions will really be needed

at runtime, the toolkit provides a fairly complex set of

options for manually declaring what will be needed in

the �nal application.

The WCL executable was linked with the shared

Common Lisp library described earlier. The use of a

shared library has important implications for deliver-

ing and running many Lisp based applications on a sin-

gle machine. Using the Lucid or AKCL \disksave" ap-

proach, ten other applications that are similar to the

\Hello World!" program will not only require the same

amount of disk space as \Hello World!", but they will

also contain ten almost identical copies of the Common

Lisp runtime library that will not be shared on disk or in

memory. This lack of sharing dramatically increases the

amount of memory required to run several Lisp based

applications at once. A shared library can also be re-

placed at anytime by a newer version of itself without

recompiling or relinking any of the applications which

use the library, thus making it easy for all applications

to bene�t from bug �xes or performance improvements.

6.3 Startup time

Table 3 also shows the minimum amount of time re-

quired to start and exit the \Hello World!" program.

These times were obtained by repeatedly running the

application until a consistent, minimal time was ob-

tained. These numbers are meant to avoid paging time

since that can vary in response to a variety of factors.

However, in realistic day to day usage, the actually

startup time for an application is heavily dependent on

its size and the resulting paging time. WCL actually

bene�ts from having many Lisp applications running

at once, because each application increases the likely-

hood that a shared WCL library will be resident in main

memory. The exact opposite is true of statically linked

applications because they do not share code and thus

�ght with each other for available memory.

A WCL applications spends its startup time set-

ting up shared libraries and running initialization code.

Ideally, a shared library consists of only position-

independent code that can be mapped anywhere into

the address space of a process and can start executing

without excessive runtime relocation and without hav-

ing to make private copies of the library. Unfortunately,

the Lisp library also contains a signi�cant amount of

initialized pointer data such as lists, arrays, and sym-

bols. The correct value for these pointers is position-

dependent, and thus they must be relocated when the

library starts, slowing the start of an application.

Under SunOS, these symbol relocations are not re-

solved incrementally, but are instead completely re-

solved before the program starts executing, while pro-

cedure relocations are done incrementally as they are

needed during execution. SunOS supports linking with

\.sa" �les containing exported, initialized shared library

data to avoid this problem. Although WCL does not

currently support this option, including all of the ini-

tialized pointer data in each application should improve

the startup time at the cost of an increased executable

size. One compromise is to support two versions of the

library, one of which contains the initialized data for

programs that must be small at the expense of startup

time, and another library that does not contain the data

for applications that don't mind the space penalty.

Initialization code is another contributor to startup

time. Lisp has traditionally supported a \load-and-



Benchmark WCL 2.0 Lucid 4.0 AKCL 1-530

Boyer 3.54 2.94 2.70

Browse 5.75 2.81 4.50

CTak 7.25 1.09 7.35

Dderiv 1.60 .82 1.48

Deriv 1.20 .65 1.05

Destructive .67 .26 .45

Iterative div2 .58 .32 .55

Recursive div2 2.07 1.88 2.00

FFT 8.20 .34 9.21

FPrint .31 .49 .25

FRead .69 .29 .23

Frpoly10r .01 .01 .02

Frpoly10r2 .10 .05 .10

Frpoly10r3 1.21 .65 1.25

Frpoly15r 9.45 5.19 13.03

Puzzle .83 .95 1.72

STak .59 .67 .90

Tak .05 .05 .87

Mas .35 .32 .30

Takr .08 .10 .10

TPrint 1.55 .56 .58

Traverse 5.76 4.28 7.40

Triangle 15.42 12.22 19.217

Table 4: Gabriel Benchmark Times

disksave" model of linking. Thus, initialization actions

such as computing a dispatch table are done at load

time and do not cost anything when the resulting mem-

ory image is dumped and later run as an executable.

Programs such as PCL make extensive use of this fea-

ture. Unfortunately, linking under Unix does not sup-

port this, and thus initialization functions must be run

every time an executable is started. Because of this,

WCL defers some initialization actions until they are ac-

tually required, rather than unconditionally doing them

at startup time. However, more work can be done to re-

duce initialization time.

6.4 Benchmarks

Table 4 presents the running times of the gabriel bench-

marks in three Lisps. All tests were compiled with the

compiler set for maximum optimization, and were run

on an idle Sun SparcServer 4/330 running SunOS 4.1.1

with 96 megabytes of physical memory. Both the WCL

and the KCL benchmarks were compiled with GCC 2.1

using the -O2 option.

Three runs of each benchmark were performed, and

the best elapsed real time is listed in the table. All

benchmarks were preceded by a garbage collection. Lu-

cid was run with the ephemeral garbage collector turned

o�.

The two benchmarks with the widest variation in

time are FFT and CTak. FFT does poorly in both

WCL and KCL because these systems are storing oat-

ing point results in the heap, and thus they spend most

of their time allocating memory. Lucid avoids this by

only allocating oats in the heap when necessary.

CTak is also much slower in WCL and KCL because

these systems implement catch and throw with setjmp

and longjmp. Because SPARC uses a register window

design, setjmp can be implemented by simply saving

the stack pointer and relying on the fact that all reg-

isters are safely saved somewhere in the register �le or

on the stack. However, in order to retrieve the reg-

isters for a speci�c environment, longjmp ushes the

entire register �le to the stack, which is an expensive

operation. Thus, both WCL and KCL spend roughly

80% of their time in longjmp ushing the register �le!

The current implementation of setjmp and longjmp is

probably optimal for most real programs which dynam-

ically execute setjmp much more often than longjmp,

but CTak would bene�t from an implementation which

assumes that these operations dynamically occur with

equal frequency.



7 Comparisons to Related Work

WCL is clearly related to other Lisp-to-C translators

such as KCL, Scheme->C [11], Chestnut Software's Lisp

translator, and Ibuki's CONS system. However, WCL

di�ers from these systems not only in the runtime model

that it uses for translating Lisp to C, but also in its

approach to delivering applications. Of these systems,

Chestnut and Ibuki seem to have done the most work

directed towards producing an e�cient delivery envi-

ronment. However, these systems take a fundamentally

di�erent approach than WCL toward solving the de-

livery problem because they choose to statically link a

standalone executable.

An earlier version of WCL also supported static link-

ing with a library from which applications could extract

only the code they required. However, static linking

was eventually abandoned because the Lisp library is

too intertwined to easily produce small binaries without

excessive intervention on the part of the programmer.

This intervention requires the programmer to assist the

Lisp system in determining what parts of Lisp will not

be required at runtime. Not only is this intervention

cumbersome and error prone, but it draws a sharp dis-

tinction between the development environment and the

delivery environment - a distinction C programmers do

not encounter. Furthermore, no matter how small a

statically linked executable becomes, it can never share

code or data with related applications, and thus mul-

tiple applications are doomed to duplicate large pieces

of common information, just as we saw in the statically

linked xcalc example given earlier.

All of these problems with static linking led to the

adoption of dynamic linking with a shared library in

WCL. Using dynamic linking, there is virtually no dif-

ference between the development system and the deliv-

ery system because all language features are available to

an application. Furthermore, WCL applications bene�t

from the sharing between applications that is inherent

in shared libraries. WCL also appears to be the only

Lisp system that uses the same debugger as C and other

foreign languages. This combination of features allows

WCL to provide a tighter and more e�cient integration

of Lisp with main stream computing.

8 Future Work

Improving executable startup time is an important di-

rection for future work. As we have already seen, there

are several ways to attack this problem, most of which

appear to be solvable. Dealing with initialized pointer

data in shared libraries is the most di�cult obstacle to

overcome. Ideally Unix could be made to incrementally

relocate data in shared libraries just as it currently does

for procedures. However, barring this sort of operating

system change, the amount of initialized pointer data

in the library must be reduced, or that data must be

moved into each application. With a bit of assistance

from the user when linking an application, it should be

possible to remove almost all of the symbols from many

applications.

Adding source level debugging to Lisp code is an-

other important direction for improvement, although

three problems arise when trying to do this.

First, GDB is a line oriented debugger, whereas Lisp

is an expression oriented language. Thus, if several ex-

pressions occur on a line and an error occurs in one

of those expressions, the best GDB can do is point at

the line containing all of the expressions. This problem

could be solved if Unix simply used source �le character

positions rather than line numbers for debugging, but

for historical reasons this is unlikely to change soon.

The second problem arises from Lisp macros. Be-

cause macros can perform arbitrary program transfor-

mations, it is impossible to always determine the map-

ping from the expansion of a macro back to the origi-

nal source code. However, in practice most macros do

not make copies of input expressions, but instead splice

those expressions into other pieces of code, thus dissect-

ing the original source.

The third problem arises from the uniqueness of

symbols in Lisp. A single symbol may be referred to

on many di�erent source code lines, thus making it dif-

�cult to accurately associate each symbol reference with

the correct line number in the presence of complex or

arbitrary program transformations. The uniqueness of

characters as well as the immediate representation of

�xnums presents a similar problem.

The current compiler could also use numerous im-

provements. Adding much more sophisticated type in-

ference and data representation analysis would yield the

greatest bene�ts in compiled code. CMU Common Lisp

[12] has already demonstrated the usefulness of these

techniques. Ideally, the current compiler could also be

used as the front end for an existing compiler backend

such as GCC rather than emitting C code. Not only

would this speed up the compiler, but it would o�er

new opportunities for optimization.

Other useful improvements include: changing the

garbage collector to make it generational [13] and pos-

sibly incremental [14], supporting native Unix threads

in operating systems that provide them, and adding ef-

�cient support for \frozen" CLOS programs. A large

amount of work remains, all of which is guided by the

desire to facilitate the development and delivery of Lisp

applications which are as competitive as possible with

C based applications.



9 Conclusion

WCL demonstrates that Common Lisp applications can

be e�ciently delivered under Unix by taking advantage

of Unix's shared library support. This support allows

hundreds of Lisp applications to realistically be avail-

able at once, while allowing several of them to run con-

currently, just as C applications currently do. Further-

more, none of the unique features that make Lisp an

appealing development environment need to be sacri-

�ced. Instead, an even tighter integration between Lisp

and foreign languages is possible by using a single de-

bugger such as GDB. These features all support WCL's

ultimate goal of helping real Common Lisp applications

penetrate main stream computing more deeply than has

previously been possible.

10 Acknowledgements

Thanks to the following people and groups who have

provided software which has been modi�ed and incorpo-

rated intoWCL: Kent Pitman, Glenn Gribble, The MIT

AI Lab, Texas Instruments, DEC and INRIA, CMU

Spice Lisp, Mark Kantrowitz, and Guy Steele. I would

also like to thank the following people for their help:

Je� Aldrich, Dave Dungan and the Center for Design

Research for providing the computing resources needed

to develop WCL, Joel Bartlett for his garbage collector

ideas and beer and closures, Eric Benson for reviewing

an early version of this paper, and Fred Lakin for his

help in testing WCL, his comments on this paper, and

his encouragement of this project.

References

[1] Richard M. Stallman and Rolan Pesch. Using GDB:

A Guide to the GNU Source-Level Debugger. Free

Software Foundation and Cygnus Support, Cambridge,

Massachusetts, 1991.

[2] Joel F. Bartlett. Compacting Garbage Collection With

Ambiguous Roots. Technical Report 88/2, DECWRL,

Palo Alto, California, February 1988.

[3] Richard M. Stallman. Using and Porting GNUCC. Free

Software Foundation and Cygnus Support, Cambridge,

Massachusetts, 1992.

[4] Gregor Kiczales and Luis Rodriguez. E�cient Method

Dispatch in PCL. In Conference on Lisp and Functional

Programming. ACM, 1990.

[5] Guy L. Steele Jr. Common Lisp The Language, Second

Edition. Digital Press, Bedford, Massachusetts, 1990.

[6] Richard M. Stallman. GNU EMACS Manual. Free Soft-

ware Foundation, Cambridge, Massachusetts, 1989.

[7] The Performing Graphics Company. VMACS Elec-

tronic Design Notebook

TM

User's Manual. The Per-

forming Graphics Company, Palo Alto, California,

1991.

[8] William Schelter. AKCL is available via anonymous ftp

from rascal.ics.utexas.edu.

[9] Taiichi Yuasa and Masami Hagiya. Kyoto Common Lisp

Report. Kyoto University, Kyoto, Japan, 1985.

[10] SUN Microsystems. Sun Common Lisp 4.0 User's

Guide. Sun Microsystems, Mountain View, California,

1990.

[11] Joel F. Bartlett. SCHEME->C: A Portable Scheme-to-

C Compiler. Technical Report 89/1, DECWRL, Palo

Alto, California, Janurary 1989.

[12] Robert A. MacLachlan. CMU Common Lisp User's

Manual. Carnegie Mellon University, Pittsburgh, PA,

1991.

[13] Joel F. Bartlett. Mostly-Copying Garbage Collection

Picks Up Generations and C++. Technical Note TN-

12, DECWRL, Palo Alto, California, October 1989.

[14] G. May Yip. Incremental, Generational, Mostly-

Copying Garbage Collection in Uncooperative Environ-

ments. Technical Report 91/8, DECWRL, Palo Alto,

California, June 1991.


